Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Lab Chip ; 2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2241659

ABSTRACT

The femtoliter-chamber array is a bioanalytical platform that enables highly sensitive and quantitative analysis of biological reactions at the single-molecule level. This feature has been considered a key technology for "digital bioanalysis" in the biomedical field; however, its versatility is limited by the need for a large and expensive setup such as a fluorescence microscope, which requires a long time to acquire the entire image of a femtoliter-chamber array. To address these issues, we developed a compact and inexpensive wide-field imaging system (COWFISH) that can acquire fluorescence images with a large field of view (11.8 mm × 7.9 mm) and a high spatial resolution of ∼ 3 µm, enabling high-speed analysis of sub-million femtoliter chambers in 20 s. Using COWFISH, we demonstrated a CRISPR-Cas13a-based digital detection of viral RNA of SARS-CoV-2 with an equivalent detection sensitivity (limit of detection: 480 aM) and a 10-fold reduction in total imaging time, as compared to confocal fluorescence microscopy. In addition, we demonstrated the feasibility of COWFISH to discriminate between SARS-CoV-2-positive and -negative clinical specimens with 95% accuracy, showing its application in COVID-19 diagnosis. Therefore, COWFISH can serve as a compact and inexpensive imaging system for high-speed and accurate digital bioanalysis, paving a way for various biomedical applications, such as diagnosis of viral infections.

2.
J Med Chem ; 65(20): 13852-13865, 2022 10 27.
Article in English | MEDLINE | ID: covidwho-2062145

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has necessitated the development of antiviral agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 3C-like protease (3CLpro) is a promising target for COVID-19 treatment. Here, we report a new class of covalent inhibitors of 3CLpro that possess chlorofluoroacetamide (CFA) as a cysteine-reactive warhead. Based on an aza-peptide scaffold, we synthesized a series of CFA derivatives in enantiopure form and evaluated their biochemical efficiency. The data revealed that 8a (YH-6) with the R configuration at the CFA unit strongly blocks SARS-CoV-2 replication in infected cells, and its potency is comparable to that of nirmatrelvir. X-ray structural analysis showed that YH-6 formed a covalent bond with Cys145 at the catalytic center of 3CLpro. The strong antiviral activity and favorable pharmacokinetic properties of YH-6 suggest its potential as a lead compound for the treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Coronavirus 3C Proteases , Peptide Hydrolases , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Protease Inhibitors/chemistry , Cysteine , Cysteine Endopeptidases/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Peptides/chemistry
3.
medRxiv ; 2022 Jan 11.
Article in English | MEDLINE | ID: covidwho-808244

ABSTRACT

SARS-CoV-2 precipitates respiratory distress by infection of airway epithelial cells and is often accompanied by acute kidney injury. We report that Kidney Injury Molecule-1/T cell immunoglobulin mucin domain 1 (KIM-1/TIM-1) is expressed in lung and kidney epithelial cells in COVID-19 patients and is a receptor for SARS-CoV-2. Human and mouse lung and kidney epithelial cells express KIM-1 and endocytose nanoparticles displaying the SARS-CoV-2 spike protein (virosomes). Uptake was inhibited by anti-KIM-1 antibodies and TW-37, a newly discovered inhibitor of KIM-1-mediated endocytosis. Enhanced KIM-1 expression by human kidney tubuloids increased uptake of virosomes. KIM-1 binds to the SARS-CoV-2 Spike protein in vitro . KIM-1 expressing cells, not expressing angiotensin-converting enzyme 2 (ACE2), are permissive to SARS-CoV-2 infection. Thus, KIM-1 is an alternative receptor to ACE2 for SARS-CoV-2. KIM-1 targeted therapeutics may prevent and/or treat COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL